Introduction to Trigonometry For Class 10 Maths MCQ Questions

Q 1 – If x and y are complementary angles, then
(a) sin x = sin y
(b) tan x = tan y
(c) cos x = cos y
(d) sec x = cosec y

(d) sec x = cosec y

Q 2 – The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is
(a) 1

(b) –1
(c) 0
(d) \frac{1}{√2}

(c) 0

Q 3 – If x = a cos 0 and y = b sin 0, then b2x2 + a2y2 =
(a) ab
(b) b2 + a2
(c) a2b2
(d) a4b4

(c) a2b2

Q 4 – If x and y are complementary angles, then
(a) sin x = sin y
(b) tan x = tan y
(c) cos x = cos y
(d) sec x = cosec y

(d) sec x = cosec y

Q 5 – If tan 2A = cot (A – 18°), then the value of A is
(a) 24°
(b) 18°
(c) 27°
(d) 36°

(d) 36°

Q 6 – sin 2B = 2 sin B is true when B is equal to
(a) 90°
(b) 60°
(c) 30°
(d) 0°

(d) 0°

Q 7 – Ratios of sides of a right triangle with respect to its acute angles are known as
(a) trigonometric identities
(b) trigonometry
(c) trigonometric ratios of the angles
(d) none of these

(c) trigonometric ratios of the angles

Q 8 –  If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to
(a) 0
(b) \frac{1}{√3}
(c) 1

(d) √3

(c) 1

Q 9 – Out of the following options, the two angles that are together classified as complementary angles are
(a) 120° and 60°
(b) 50° and 30°
(c) 65° and 25°
(d) 70° and 30°

(c) 65° and 25°

Q 10 – If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ..
(a) -1
(b) 0
(c) 1
(d) 2

(c) 1

Q 11 –  If sin x + cosec x = 2, then sin19x + cosec20x =
(a) 219
(b) 220
(c) 2
(d) 239

(c) 2

Q 12. 5 tan² A – 5 sec² A + 1 is equal to
(a) 6
(6) – 5
(c) 1
(d) – 4
.

(d) – 4

Q 13 – If cos (α + β) = 0, then sin (α – β) can be reduced to
(a) cos β
(b) cos 2β
(c) sin α
(d) sin 2α

 (b) cos 2β

Q 14 – If x = a cos 0 and y = b sin 0, then b2x2 + a2y2 =
(a) ab
(b) b² + a²
(c) a²b²
(d) a4b4

(c) a²b²

Q 15 – If cosec θ – cot θ = \frac{1}{3}, the value of (cosec θ + cot θ) is
(a) 1
(b) 2
(c) 3
(d) 4

(c) 3

Q 16 – What is the minimum value of sin A, 0 ≤ A ≤ 90°
(a) –1
(b) 0
(c) 1
(d) \frac{1}{2}

(b) 0

Q 17 – The value of cos θ cos(90° – θ) – sin θ sin (90° – θ) is:
(a) 1
(b) 0
(c) –1
(d) 2

(b) 0

Q 18 – If ΔABC is right-angled at C, then the value of cos (A + B) is
(a) 0

(b) 1
(c) \frac{1}{2}
(d) \frac{√3}{2}

(a) 0

Q 19 – If cos 9A = sin A and 9A < 90°, then the value of tan 5A is
(a) 0

(b) 1
(c) \frac{1}{√3}
(d) √3

(b) 1

Q 20 – If √2 sin (60° – α) = 1 then α is
(a) 45°
(b) 15°
(c) 60°
(d) 30°

(b) 15°

Q 21 –   If in ΔABC, ∠C = 90°, then sin (A + B) =
(a) 0
(b) \frac{1}{2}
(c) \frac{1}{√2}
(d) 1

(d) 1

Q 22.  2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to
(a) 0
(b) 6
(c) –1
(d) None of these

(c) –1

Q 23 – Given that sin α = 1/2 and cos β = 1/2, then the value of (α + β) is
(a) 0°
(b) 30°
(c) 60°
(d) 90°

(d) 90°

Q 24 – If cos (40° + A) = sin 30°, then value of A is
(a) 30°
(b) 40°
(c) 60°
(d) 20°

(d) 20°

Q 25. sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ
(b) 0
(c) 2 sin θ
(d) 1

(b) 0

Q 26 – If A + B = 90°, cot B = \frac{3}{4} then tan A is equal to:
(a) \frac{5}{3}
(b) \frac{1}{3}
(c) \frac{3}{4}
(d) \frac{1}{4}

Q 27. \frac{1+tan^2A}{1+Cot^2A} is equal to
(a) sec² A
(b) –1
(c) cot² A
(d) tan² A

(d) tan² A.

Q 28 – If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ____
(a) –1
(b) 0
(c) 1
(d) 2

(c) 1