Q 1 – Find the products:
(i) (𝑥 – 1) (𝑥 + 1) (𝑥2 + 1) (𝑥4 + 1)
(ii)() (
) (
) (
)
Ans. (i)
= (x -1) (x +1) (x2 +1) (x4 +1)
= (x2-1)(x2+1)(x4 +1)
={(x2)2-12}(x4+1)
=(x4 —1)( x 4 +1) = (x4 )2 —12 = x 8 —1
(ii)() (
) (
) (
)

Q 2 – Prove that:
a3 + b3 + c3 – 3abc = (a + b + c) {(a – b)2 + (b – c)2 + (c – a)2}
Ans.
We have,
a3 + b3 + c3 – 3abc
= (a + b + c)(a2 +b2 +c2 – ab – bc – ca)
(a + b + c)(2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca)
(a + b + c){(a2 – 2ab + b2 ) + (b2 – 2bc + c2 ) + (c2 – 2ca + a2)}
(a + b + c) { (a – b)2 + (b – c)2 + (c – a)2}
Q 3 – If 4𝑥 – 4𝑥-1 = 24, then (2𝑥)𝑥 equals ………
Ans.

Q 4 – If a + b = 10 and a2 + b2 = 58, find the value of a3 + b3
Ans.
(a+b)² = a²+b²+2ab.
(10)²=58+2ab
now,
(a+b)³=a³+b³+3ab(a+b)
10³=a³+b³+(3 × 21 ×10)
a³+b³=1000-630
therefore, a³+b³=370.
Q 5 – Show that:
p – 1 is a factor of p10 + p8 + p6 – p4 – p2 – 1.
Ans.
p – 1= 0
p = 1
on putting an equation p =1
(1) × 10 + (1) × 8 + (1) × 6 – (1) × 4 – (1) × 2 – 1
10 + 8 + 6 – 4 –2 –1 =18 + 6 – 6 –1 =18 –1 =17
no it is not factor.
Q 6 – Prove that:
(a + b)3 + (b + c)3 + (c + a)3 – 3(a + b)(b + c)(c + a) = 2(a3 + b3 + c3 – 3abc)
Ans.
Solve L.H.S:
L.H.S =(b+c)3+(c+a) 3+(a+b) 3−3(b+c)(c+a)(a+b)
Using algebraic formula,
(a+b)3=a3+3a2b+3ab2+b3
=b3+c3+3b2c+3bc2+c3+a3+3c2a+3ca2
= a3+b3+3a2b+3ab2−3(b+ c) (c+a)(a+b)
=2(a3+b3+c3)+3b2c+3bc2+3c2a+3ca2+3a2b+3ab2−3(b+c) (c + a) (a+b)+6abc−6abc
=2(a3+b3+c3)+3b2c+3bc2+3c2a+3ca2+3a2b+3ab2−3(b+c)(c + a) (a+b)−6abc
=2(a3+b3+c3)+3(b+c)(c+a)(a+b)−3(b+c)(c+a)(a+b)−6abc
=2(a3+b3+c3)−6abc
=2(a3+b3+c3−3abc)
=R.H.S, Hence proved.
Q 7 – If a + b + c = 0 then write the value of +
+

Q 8 – Factorize: 2√2𝑥3 + 3√3𝑦3 + √5 (5 – 3√6𝑥𝑦)
Ans. Instruction Based on
a3+b3+c3−3abc formula
Calculation
2√2x3+3√3y3+√5(5−3√6xy)
2√2x3+3√3y3+5√5−3√6×√5xy
(√2x+√3y+√5)(2×2+3y2+52−√6xy−√15y−√10x)
Q 9 – The product (a + b) (a – b) (a2 – ab + b2) (a2 + ab + b2) is equal to
Ans.
= (a + b)(a – b)(a2 – ab + b2)(a2 + ab + b2)
= (a + b)(a2 – ab + b2) × (a – b)(a2 + ab + b2)
= (a³ + b³) × (a³ – b³)
= (a³)² – (b³)²
= a6 – b6

Q 11 – Simplify:
Ans.

Q 12 – If a2 + b2 + c2 – ab – bc – ca = 0, prove that a = b = c.
Ans.
Consider, a2 + b2 + c2 – ab – bc – ca = 0
Multiply both sides with 2, we get
2( a2 + b2 + c2 – ab – bc – ca) = 0
2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
(a2 – 2ab + b2) + (b2 – 2bc + c2) + (c2 – 2ca + a2) = 0
(a –b) 2 + (b – c) 2 + (c – a) 2 = 0
Since the sum of the square is zero then each term should be zero
(a –b) 2 = 0, (b – c) 2 = 0, (c – a) 2 = 0
(a –b) = 0, (b – c) = 0, (c – a) = 0
a = b, b = c, c = a
∴ a = b = c
Q 13 – Find the value of k, (𝑥 + 𝑦)3 – (𝑥 – 𝑦)3 – 6𝑦(𝑥2 – 𝑦2) = k𝑦2
Ans.
( x + y)³ -( x -y)³ -6y(x² – y² ) = Ky²
we know,
a³ – b³ = (a – b)( a² + ab + b²)
(x + y)³ -(x – y)³ = (x + y – x + y){(x +y)² + ( x -y)² + (x +y)(x -y) }
=( 2y ) { 2x² + 2y² + x² – y²)
= 2y ( 3x² + y²)
put this in above ,
2y ( 3x² + y²) -6y( x² – y²) = Ky²
6x²y +2y³ -6x²y +6y³ = Ky²
8y³ = Ky²
K = 8y
Q 14 – If a + b + c = 6 and ab + bc + ca = 11, find the value of a3 + b3 + c3 – 3abc.
Ans.
a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
a3 + b3 + c3 – 3abc = (a+ b + c){(a2 + b2 + c2) – (ab + bc + ca)} …(i)
Clearly, we require the values of a + b+ c, a2 + b2 + c2 and ab + bc + ca to obtain the value of a3 + b3 + c3 – 3abc.
We are given the values of a + b + c, ab + bc + ca. So, Let us first obtain the value of a2 + b2 + c2.
We know that
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
(a + b + c) 2 = (a2 + b2 + c2) + 2(ab + bc + ca)
62 = a2 + b2 + c2 + 2 × 11 [putting the values of a + b + c and ab + bc + ca]
36 = a2 + b2 + c2 + 22
a2 + b2 + c2 = 36 – 22
a2 + b2 + c2 = 14
Now, putting a + b + c = 6, ab + bc + ca = 1 and a2 + b2 + c2 = 14 in (i), we get
a3 + b3 + c3 – 3abc = 6 × (14 – 11) = 6 × 3 = 18.
Q 15 – Evaluate the following by using identities: (1.5𝑥2 – 0.3𝑦2) (1.5𝑥2 + 0.3𝑦2)
Ans.
Take A = 1.5 x2
Take B = 0.3y2
& applying identity
(A + B) (A – B) = A2 – B2
(A – B) × (A + B) = A2 – B2
(1.5 x2 – 0.3y2) (1.5x2 + 0.3y2) = (1.5x2) 2 – (0.3y2) 2= 2.25x4 – 0.09y4
Q 16 – Factorize: (𝑥2 – 4𝑥)(𝑥2 – 4𝑥 – 1) – 20
Ans.
Ans. We have,
(x2 – 4x)(x2 – 4x -1) – 20
= (x2 – 4x)2 – (x2 – 4x) – 20
= y2 – y – 20, where y = x2 – 4x
= y2 – 5y + 4y – 20
= (y2 – 5y) + (4y – 20)
= y (y – 5) + 4(y – 5)
= (y – 5)(y + 4)
= (x2 – 4x – 5) (x2 – 4x + 4) [Replacing y by x2 – 4x]
= (x2 – 5x + x – 5) (x2 – 2 × x × 2 + 22)
= {x (x – 5) + (x – 5)} (x – 2) 2 = (x – 5) (x + 1) (x – 2) 2